High-Dimensional Clustering Method for High Performance Data Mining

نویسندگان

  • Jae-Woo Chang
  • Hyunjo Lee
چکیده

Many clustering methods are not suitable as high-dimensional ones because of the so-called ‘curse of dimensionality’ and the limitation of available memory. In this paper, we propose a new high-dimensional clustering method for the high performance data mining. The proposed high-dimensional clustering method provides efficient cell creation and cell insertion algorithms using a space-partitioning technique, as well as makes use of a filtering-based index structure using an approximation technique. In addition, we compare the performance of our high-dimensional clustering method with the CLIQUE method which is well known as an efficient clustering method for highdimensional data. The experimental results show that our high-dimensional clustering method achieves better performance on cluster construction time and retrieval time than the CLIQUE.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High-Dimensional Unsupervised Active Learning Method

In this work, a hierarchical ensemble of projected clustering algorithm for high-dimensional data is proposed. The basic concept of the algorithm is based on the active learning method (ALM) which is a fuzzy learning scheme, inspired by some behavioral features of human brain functionality. High-dimensional unsupervised active learning method (HUALM) is a clustering algorithm which blurs the da...

متن کامل

An Efficient Cell-Based Clustering Method for Handling Large, High-Dimensional Data

Data mining applications have recently required a large amount of high-dimensional data. However, most clustering methods for the data miming applications do not work efficiently for dealing with large, high-dimensional data because of the so-called ‘curse of dimensionality’ [1] and the limitation of available memory. In this paper, we propose an efficient cell-based clustering method for handl...

متن کامل

Feature Selection for Small Sample Sets with High Dimensional Data Using Heuristic Hybrid Approach

Feature selection can significantly be decisive when analyzing high dimensional data, especially with a small number of samples. Feature extraction methods do not have decent performance in these conditions. With small sample sets and high dimensional data, exploring a large search space and learning from insufficient samples becomes extremely hard. As a result, neural networks and clustering a...

متن کامل

CUSTOMER CLUSTERING BASED ON FACTORS OF CUSTOMER LIFETIME VALUE WITH DATA MINING TECHNIQUE

Organizations have used Customer Lifetime Value (CLV) as an appropriate pattern to classify their customers. Data mining techniques have enabled organizations to analyze their customers’ behaviors more quantitatively. This research has been carried out to cluster customers based on factors of CLV model including length, recency, frequency, and monetary (LRFM) through data mining. Based on LRFM,...

متن کامل

Solving Data Clustering Problems using Chaos Embedded Cat Swarm Optimization

In this paper, a new method is proposed for solving the data clustering problem using Cat Swarm Optimization (CSO) algorithm based on chaotic behavior. The problem of data clustering is an important section in the field of the data mining, which has always been noted by researchers and experts in data mining for its numerous applications in solving real-world problems. The CSO algorithm is one ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007